
<0

CD fihoa^ikhJe -fyoi-n^
«

! °
Lu!
—I BOEING?

X

SCIENTIFIC
RESEARCH

ABORATORIES

CO

Uniform Random Number Generators

00c-^ B

i

M. Donald MacLaren

George Marsaglia

AAathematics Research

April 1964

—a—■———I—I i ii «ammmmmmmmmmmmMmmmmmm:**

,e-

Dl-82-03^9

UNIFORM RANDOM NUMBER GENERATORS

by

M. Donald MacLaren

and

George Marsaglia

Mathematical Note No. 3A9

Mathematics Research Laboratory

BOEING SCIENTIFIC RESEARCH LABORATORIES

April 1964

Summary

This paper discusses the testing of methods for generating

uniform numbers in a computer--the commonly used multiplicative

and mixed congruential generators as vell as t~o nev methods.

Tests proposed here are more stri~gent than those usually applied,

because the usual tests or randomness have passed several of the

commonly used procedures vhich s bsequently gave poor results in

actual Monte Carlo calculations. he principal difficulty seems

to be that certain simple _unctions of n-tuples o uni orm random

numbers do not have the distribution that probability theory predicts.

Two alternative eneratin metho s are described, one of them

u in a t b e o uni orm numbers , the other one combining tvo

con ruen t i 1 enerators. Both of these methods passed the tests,

whereas the or entiona multiplicative and mixed congruential

e hods i not .

Introcluction

This paper reports the results of extensive testing of random

number generators, including two which we propose as improvements on

present methods. We carried out this program of testing because random

numbers generated by mixed congruential methods gave bad results in a

number of Monte Carlo calculations, notably those involving order

statistics. The tests suggest that mixed generators are unsati~factory

and that generators of the straight multiplicative type are better but

still suspect. For this reason, we propose two generators which are

variations on familiar ideas. One combines two congruential generators

and the other uses a table of random numbers. Both tested out very well.

By a random number generator, we mean any procedure for producing

within a computer a sequence of numbers u
1
,u2,... which is supposed

to represent a sequence o independent uniform random variables. Although

the U. are supposed to be random, they are usually generated by a
1

strictly deuerministic procedure. Most often the Ui are regarded as

integers, and Ui+l is computed by

(1) mod M,

where M is generally taken as 2n for an n-bit binary machine and

lOn for an n-digit decimal machine. The random number generator is

often called"multiplicativ~if c = 0 and "mixed" if c 1 o.

Generators of this type have been used and f avorably reported by many

'people; an extensive list of references may be found in the survey article

[3) . Nevertheless, we have had trouble with mixed generators. This led

us to study the testing of random numbers • We decided that the tests

commonly applied to random number generators are not of much value.

The tests we discuss In this paper are more stringent than the common

tests, but not at all unreasonable.

In attempting to Improve on the congruentlal generators, we tried

combining two of them. This gave a generator which seems to be better

than either of the two congruentlal generators, but It has the disadvantage

of being slower. We also Investigated the possibility of using a table

of random numbers. This turns out to be practical on a large computer

with buffered Input; In fact, for such a machine we recommend this

method.

1, A random number generator using a table of random numbers

An obvious alternative to the use of a numerical procedure for

generating uniform random numbers Is to use some sort of table of random

numbers. The big advantage of this is that one should be able to get a

table which has none of the undesirable characteristics of the numeri-

cally generated sequences. The two main problems with this approach are

the time needed to read the table into the computer and the possibility

of exhausting the table. In this section we describe a random number

generator which uses a table but overcomes these two problems.

To overcome the time problem we use a computer with buffered input.

We use two blocks of core storage to hold random numbers, refilling one

block from tape while using numbers from the other block. Thus, to get

be considered a set of ^85 independent random bits. The whole

sequence of random bits was grouped to form the table put on tape.

The number 14.6 and 4,85 were chosen to give an efficient

conversion from decimal random digits to random bits. It happens

that 101A6 > 2/f85 > .9991 x lO1^6. Therefore, the conversion is 99.9

per cent efficient and obtains almost the maximum of log?10 bits per

digit.

In the test results summarized in Section 4-> the first run used the

numbers in the table. The second run used the transformation:

'

U» = (215 + 5)U + 3 mod 227,

and the third run used

U' = i2f + 1)U + 1 mod 2 27

2. A combination of two conpruential generators

The generator described in Section 1 is suitable only for computers

with buffered input, and requires tape handling, which may be inconvenient.

Therefore, it is still desirable to have some sort of numerical generator.

One can, of course, use a congruential generator, but our experience with

these has led us to look for generators with better statistical properties.

Suppose the first number U, for a congruential generator (1) is

picked at random. Then the sequence Ü,,U«,... may be considered a

sequence of random variables. Moreover, each U will be uniform on

[0,1], or rather on the set of numbers in [0,1] which can be represented

exactly in the computer. However, the different U. are not independent,

and it turns out that the distribution of an n-tuple (U, ,...,U) may

be quite far from the correct distribution. In order to improve the

distribution of n-tuples, we propose using two different generators

of the type (1) and having one shuffle the sequence produced by the

other.

For a test program, we used the generators

(3) "k+l ^ (217 + 3)Uk mod 235*

and

,7 ,N„ , , „^ 035 U) Vk+1 = (2' + l)Vk + 1 mod 2-

We let U0 = 1 and VQ = 0. A table of 128 locations in core was filled

with the numbers ^2.f"',^12^' Then to Senera"te * the k random

number to be used, we used the first 7 bits of Y. as an index to get

X^ from the table. The location of X. in the table was refilled with

the next number from the generator (3).

The time to generate a random number by this methou is about twice

the time required with a congruential generator. We consider that it is

worth suffering this time penalty in order to get a sequence of numbers

with better statistical properties. From the test results given in

Section 4.» we conclude that this generator does indeed have better proper-

ties than the congruential generators; refer again to the table and

remarks in that section,

3, Testing random numbers

Various procedures have been proposed for testing sequences of

random numbers, and extensive references may be found in the survey

article [3], However, most of the proposed tests seem to have little

relevance to the actual uses of random number sequences. Our experience

has been that a sequence may pass these tests and yet give a distribu-

tion of some simple function fClL,...,!!) of several uniform random

variables which is far from the correct distribution. The results

reported in Section 4- should convince the reader of this.

The two most commonly used tests, the chl-square test on the distri-

bution of the U., and the serial test, are quite useful for weeding out

some of the unsatisfactory generators from the outset; they are, in a

sense, necessary, but certainly not sufficient. Unfortunately, as

usually applied, they are of very limited precision. For example, in

[l], Hull, Dobell, and Allard, following the usual practice, divided

the unit Interval into only ten equal subintervals, In effect, this only

tests the first decimal digit of the uniform numbers, and one digit

accuracy is low, even for Monte Carlo calculations.

Another limitation of these tests is that they say nothing about

the behavior of n-tuples (U,,,,,,U) for n > 2, This is a serious

limitation, for it may happen that pairs (U,,Up) behave well while

triples (U^U-,!!-) behave very badly. The tests on the multiplicative

generators illustrate this.

Our philosophy of testing Is to test n-tuples (U.,,.,,U) for

as many values of n as possible and to make the tests for each n

more stringent than is common« Even so, we still consider that the best

practice Is to test the sequence to be used for a particular calculation

by trying it on a similar problem for which the answer Is known.

U

I 8

2
The tests we actually made were x tests on the distribution of

the random numbers, pairs of random numbers, triples of random numbers,

and various simple functions of several random numbers. The idea of

testing simple functions of several random numbers was to have some

sort of test of the behavior of n-tuples (U-,.»#,U) for n > 3 and

to have tests of pairs and triples which would be in some ways more

stringent than the basic tests.

Some of the tests were based on the distribution of the maximum

and minimum of n uniform variables. These were chosen as the easiest

of the order statistics of n uniform variables; our previous dissatis-

faction with order statistics generated by some of the congruential

generators led us to include these in our routine tests of any generators.

We also routinely test the distribution of the sum of 2, 3, and 1+

uniform variables, as these distributions are useful in certain procedures

for generating arbitrary random variables.

All the tests had the same general form, A sequence of n variables

X1,X„,... was computed from the sequence of uniform numbers. If the

uniform numbers were actually independent uniform random variables, the

X. would be independent identically distributed random variables, perhaps

multi-dimensional. The range of the X. was divided into m cells of

equal probability p and the number of occurences k. in each cell counted.

2
The x -statistic

p m (k.-np)
X = 2 —

1=1 nP

was computed. We then computed the corresponding percentile, i,e, the

probability that for a random variable with the hypothetical distribution

2
the value of x would exceed the observed value. The percentiles were

rounded to two figures except from some very small values. These per-

centiles are tabulated in Section A* Where c appears, it means the

percentile was less than »02 per cent.

All the tests were made simultaneously using the same sequence

U.,U2,... Thus the results of the various tests are not independent.

Moreover, as a programming convenience, we took the uniform numbers in

sets of ten. From a set of ten we obtained five pairs for the pairs test,

three triples for the triples test, and one each of the various one-dimen-

sional variables. Thus from a set of ten uniform numbers, only one pair

is used for the test of the maximum of two uniforms, one triple for the

maximum of three, etc. The exact details of this are given below.

Three separate runs were made for each generator, and the different

runs were independent. In fact, each run started at the point in the

sequence U,,U0,... where the last left off.

We conclude this section by summarizing the details of each test.

Uniformity. This was included for the sake of completeness. The unit

interval was divided into 100 equal cells. For each run 10,000 uniform

numbers were used, the exact sequence being U, ,U.. ,IL,,•.. The occur-

ences in each cell were counted, and the x statistic computed.

Pairs. Successive pairs of uniform numbers were taken as the coordinates

of a point in the unit square. The unit square was divided into /+00

equal cells. For each run a total of 50,000 pairs was generated.

'1

10

Triples. Successive triples of uniform numbers were taken as the coordi-

nates of a point in the unit cube. However, every tenth uniform number

was skipped. The cube was divided into 1000 equal cells. For each run a

total of 30,000 triples was generated.

Maximum of n. This test was made for n = 2, 3, 4., 5, 10, Let F

denote the distribution function of the maximum of n independent

uniform random variables. Then if V,,Vp,,..,V are independent uniform

random variables, F(max(V, ,V?,,..,V)) is uniform on [0,1], We calcu-

lated F(max(V1 ,Vp,,,,,V)) for n-tuples from the sequence IL,U2,,,,

The unit interval was divided into 100 equal sub-intervals. For each

run, we used 10,000 n-tuples. The sequence of n-tuples actually used

was (U1,..,,Un), (U11,.,.,U10+n),.,,

Minimum of n. This test was the same as that for the maximum of n

except that we took the minimum of n-tuples (V, ,,,,,V) and used the

corresponding distribution function.

Sum of n. Again this test was similar to that for the maximum of n.

We tested to see if G{V^ + *»»+y) was uniform, where G is the distribution In '

function of the sun of n uniform random variables,

A» Test results and General Remarks

Besides the generators described in Sections 1 and 2, we tested

live congruential generators. For mixed generators, we chose

(5) Vl - 101Uk + 1 mod 1010, Uo = 0»

and

(6) Vi - ^ + 1)uk+1 mod 235, U0 = 0.

' ■ ■.-... .;,-■ ■ ■ ■ ^ - --..-..•_#

11

These have been favorably reported on In [l] and [2], To represent

multiplicative generators, we chose

(7) Vl = ^00M)Uk mod 10 , 0,3 = 1,

and

(8) \+1 = (217 + 3)0, mod 235, u0 = i.

g
These multipliers insure the maximum possible period of 5 x 10 and

33 2 respectively. They follow the suggestion in U] that the multiplier

be close to vM, where M is the modulus. Finally, we tested Lehmer's

original method for the Eniac.

(9) Uk+1 = 23Uk mod 108 + 1, V0 = ^759^118.

This was the first congruential generator proposed, and it is still

widely used.

The table reports the results of 33 tests made on each of the seven

generators. These do not include all the tests actually performed, but

the results tabulated do give a fair picture of the behavior of the

various generators. The quantity given in the table is the p^rcentile

fcr the appropriate chi-square distribution. Thus, the 33 values for

each generator should behave somewhat like a set of 33 numbers chosen

uniformly from the unit Interval, There may be occasional small or large

values, but any preponderance of such values must be suspect.

On the basis of these tests, which may be viewed as preliminary,

but certainly indicative, the two mixed congruential methods and Lehmer's

12

original method axe not satisfactory! the two multiplicative methods are

suspect, while the methods based on a stored table or on mixing of two

congruential generators appear to be satisfactory. It is true that the

results of the pairs test for the storea-table generator might be viewed

with suspicion. Note, however, that for neither the stored-table

generator nor the combination generator do any epsilons, denoting a

percentile less than .02 per cent, appear in the table» Moreover if

the table of random numbers used in the stored table generator should

turn out to be unsatisfactory, one can always replace it with a better

table. We expect that an excellent table of random numbers can be pre-

pared by uslrg a sequence of congruential generators to repeatodly

shuffle either the set of numbers produced by a congruential generator

or one of the standard tables of random digits.

In conclusion, we would like to point out that with the high

speeds of modern computers it is no longer important to look for the

fastest possible random number generators. All generators are reasonably

fast, even the combination of two congruential generators takes only

56 microseconds per random number in the 7094. computer. Therefore,

we should look for the generator which produces the most suitable sequences of

random numbers. We expect that these will turn out to be generators

using a table of random numbers.

p ■

$ 15
CO CO

CD CP
4
CD C-+

P
cr

rt i-
1

CD
P^

B
•d •-;
•o w CD i-'

^ CD
U

«• M-
DJ

('•
c+ C+

tr
9 CD
CD

g
►d

CD
w -i

o
et to
;r 0
CD ct

H«
•d l

J

CD CD
4
n '•i
CD 0
ti 4
c+
h

J
' c+

M ^r
CD CD

K p
V ►d
M ^J

4
H o
CD ►d
W 4 M H«

P
c+ c+
cr CD

§ O
p* • H«

o 1
ro 05

U3
•d

CD

4 4
CD

a
CD P.
3 H«
c+ W
• c+

4 H-

B e+ H«
O
3
t

o o

ro

►d
H
CD
CO

4
M

CXJ O 0^ ^3
'.o vO Ö> rtj

0} ^o vQ O
--3 -N3 -J O

M OJ 0^ VJJ
M v^ -J O

^i

00

_n

Ui 05
H v0

CO

^

o 0^ ro
• O

^
A

VO
<3
00

ro
H

--3
Ö S

« £>. h-
1

^3

ro
o ^

00 A
H s

t-J

ct

t B »
O c+
g pg

ö H
5 CD

cf o
CD H,

M

Q
CD

0
4
P
ct
O
4

C
u
H«
3

0-4

H 00 H c
H O vO ro t-

1
ro • 00 • p ct

00 o 00 H H ■<3 H ■ n
H

C
om

bl

W
O

 C

O

g
en

ro ro H ;- 00 ro P- CO • £3 CD 3 3
ro ro Ul oo ^ o vO Ul <J

ro
4 TO fB
P 4 ct
ct fj H-

g3 O CD O
4 3 3

OJ o V^J ro -<J 00 *«.
s

VjJ 5 ca ct
i—i 0> UJ vO <1 4^ > VJJ H- O

^o P H,

^
+ H

ss II
0
P^ ro
ro h

+

ro H <1 • g <=!
• • vO • VJ1 00 VJJ ■vO

S
- W

^ ■N ^ O vn ^ 00 M + h
J

S
H

w o II
-J (h

-0 00 • ■f- UJ ro A ro
S

5 ^■—s

VjJ <3 VuJ H 4>- ■vl o H H
M O

H
O

O

+ H £- g OJ
H vn O • o • A 0^ VO p ^^
OJ 4^ vrt 00 MD o ro VO a V*)

ei

s 5
CO CO

9 s (T> to
*t
(D rt-

P
cr m H
S. to

i ^
M

«• H-
M

H«
r»- Ct"

3*
U CD
(0

§ a»
Cfl •1

o
o- a>
tr 3
a> ct-

H-
•d H
<D CD
•^
O ^
(t) o
3 4
r*-
H« c+
H tJ*
» (D

< P
P3 g M ►d

►1
H o
CD ►d
m f3 w H«

P
C+- c^-
3* CD

§ n
jr

• H«
o 1
N3 09

•Q
►O

1 4
(D

o
a> CL
3 H«
c* CO
• rt-

1
H«
cr
g e+
H"
O
3
•

o

m

o

o

«

A «

O
►d
H
a>
w

A
VJJ
•
O

•
• —i •

ä
•
H
O

•
->3

A
d

N3
Ö

U3

A A A • ^3 H

«
•

00
•

)B

P. P.
o M

A

A

A

C+
*<

vO

• ->3 A A

• H A A

•
H
H

CO
«
^3

A A
s

H
(0

to

UJ

N)

VJO

ro

VJJ

(V
+ H

II
X o ^-x
eL W

^3
w + VJJ H

vn

X

^ +
s H
o
p. II

o

+
H

f
(D

r & + a»
H 4

H M

O II w
00

ro 3
+ U) (B

a c+
H (V Pf

O
&

n

15

References

1. J, L, Allard, A. R. Dobell, and T. E. Hull, 'Mixed Congruentlal

Random Number Generators for Decimal Machines j1 J» Asso» Comp.

Mach. 10 (1963) 131-U1.

2. T. E. Hull and A, R, Dobell, "Mixed Congruential Random Number

Generators for Binary Machines," J« Asso. Comp. Mach. 11 (1964.)

31-40.

3. T. E. Hull and A. R. Dobell, "Random Number Generators," SLAM

Review L (1962) 230-25^.

U» International Business Machines Corporation, Random Number Generation

and Testing, Reference Manual C20-o011 (New York, 1959).

